hhe

12th Webinar

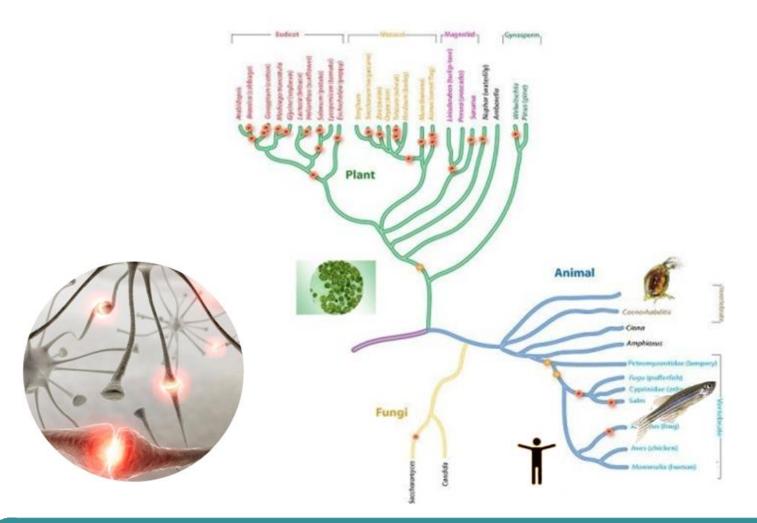
Do you know the high sensitive ToxProtect?

Fish in a tank - best choice for a simple, affordable and effective Early Warning System

Welcome

Ylva Tischler Detlev Lohse **bbe Team**

12th Webinar


Part 1 Part 2 Part 3 Part 4

Why do we measure Fish toxicity? What is the Value of *Tox*Protect? Construction & Function Application Conclusion

Feedback Follow up

bbe

The Testorganism in the Phylogenetic Tree

OPPTS 850.1075 EPA Test: ACUTE TOXICITY FOR FISH

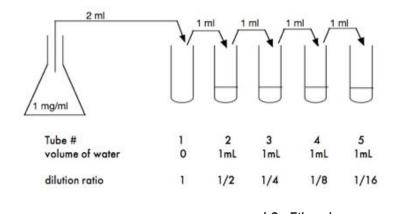
The purpose of this test is to determine the acute lethal toxicity of a substance to fish in fresh water and marine water.

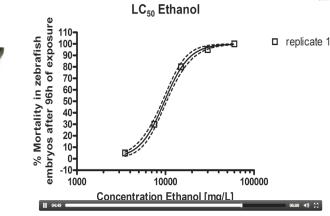
Literature on Fish Toxicity

Welcome to Search and Browse for EXTOXNET... Pesticide Information Profiles (PIPs)

EXTOXNET is a cooperative effort of University of California-Davis, Oregon State University, Michigan State University, Cornell University, and the University of Idaho. Primary files are maintained and archived at Oregon State University.

Browse... Browse these PIPs by 'clicking' on the title:


- <u>WHAT ARE PIPs?</u>
- <u>2,4-D EXTOXNET PIP</u>
- <u>2,4-DB EXTOXNET PIP</u>
- 4-AMINOPYRIDINE EXTOXNET PIP
- DCPA, CHLORTHAL, CLORTHAL-DIMETHYL EXTOXNET PIP
- <u>MCPA EXTOXNET PIP</u>
- <u>ABAMECTIN EXTOXNET PIP</u>
- <u>ACEPHATE (ORTHENE) EXTOXNET PIP</u>
- <u>ACETOCHLOR EXTOXNET PIP</u>
- <u>ACIFLUORFEN EXTOXNET PIP</u>
- <u>ALACHLOR EXTOXNET PIP</u>
- <u>ALDICARB EXTOXNET PIP</u>
- <u>ALLETHRIN EXTOXNET PIP</u>
- <u>ALUMINUM PHOSPHIDE EXTOXNET PIP</u>
- <u>AMETRYN Extoxnet PIP</u>
- <u>AMITRAZ EXTOXNET PIP</u>
- <u>AMITROLE EXTOXNET PIP</u>
- <u>AMMONIUM SULFAMATE EXTOXNET PIP</u>
- <u>ATRAZINE EXTOXNET PIP</u>

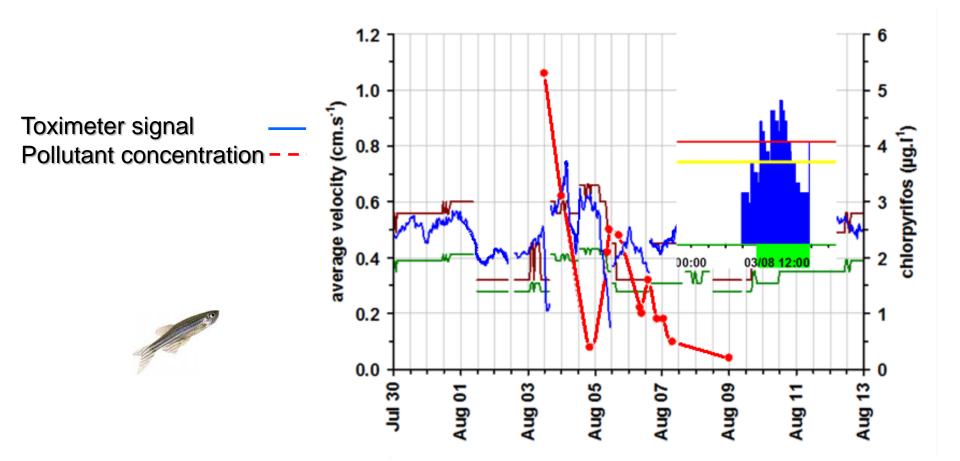

.....may cause fish and aquatic invertebrate deaths [43]. Chlorpyrifos toxicity to fish may be related to water temperature. The 96-hour LC50 for chlorpyrifos is 0.009 mg/L in mature rainbow trout, 0.098 mg/L in lake trout, 0.806 mg/L in goldfish, 0.01 mg/L in bluegill, and 0.331 mg/L in fathead minnow [50].....

moldaenke

bbe

How does the Static Test work?

moldaenke


Is the Static Test an Option?

moldaenke

bbe

Online Toxicity and Pollution Wave

moldaenke

The Alternative – Chemical Analysis?

bbe Moldaenke GmbH, Preetzer Chaussee 177, 24222 Schwentinental, Germany

ToxProtect 64

ToxProtect is a cost-effective, automated biomonitor for rapid detection of acute toxic substances in water

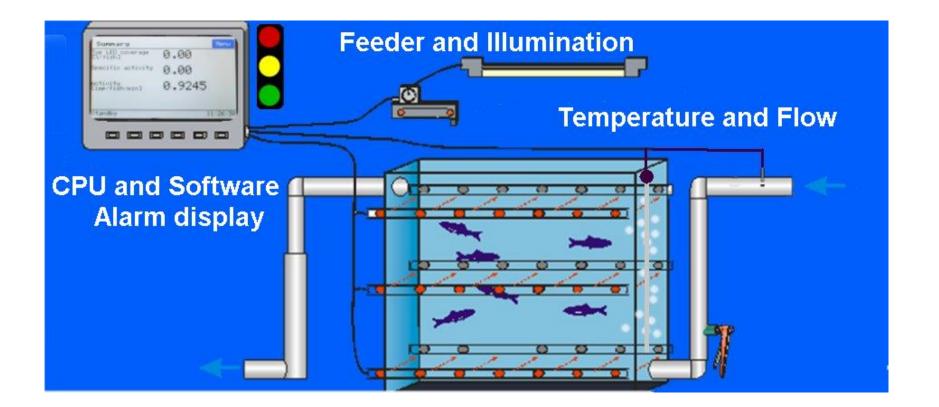
- detection of fish movements by an array of light barriers
- remote access to data including all optional sensors and online operation
- low maintenance
- simple installation

moldaenke

What makes a *Tox*Protect Attractive in Toxicity Monitoring?

- Continuous monitoring
- Ease of operation

- Sensitive vertebrate related physiology
- Reliability of hardware
- Wide temperature range: cold & warm water fish

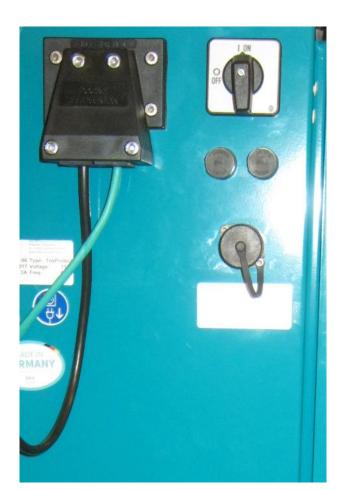

Part 3

biological · biophysical · engineering

moldaenke

bbe

Set-up of the ToxProtect



moldaenke

bbe

Essential Parts of the ToxProtect

bbe moldaenke

Essential Parts of the *Tox***Protect**



To put the Items together

- Hardware ToxProtect
- Fish/Testorganism
- AlarmSoftware

moldaenke

To each Place the Suitable Fish

Medaka

Zebrafish

Dace (Leuciscus)

Tigerbarb

Blue gill

Fathead minnow

Selection for the Type of Substances

www.pesticideinfo.org/List_EcoChemSpecies.jsp?Taxa_Group='Fish'

PAN Pesticides Database - Chemical Toxicity Studies on Aquatic Organisms

Home > Ecotoxicity Search

Aquire Search Results

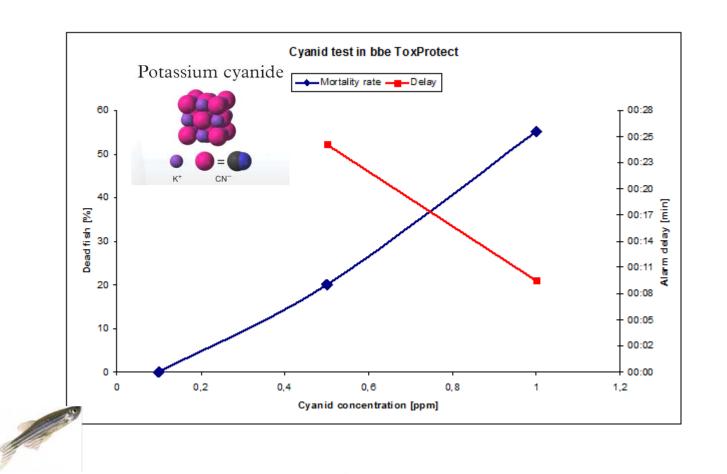
The 'Fish' organism group contains the following species. Click on any species listed below for a list of studies. Note that if we do no in the results. The PAN Pesticide database only includes pesticide-related chemicals.

Common Name	Scientific Name	Number of Studies
Blue Bream	Abramis ballerus	4
Bream	Abramis brama	28
Yellowfin goby	Acanthogobius flavimanus	5
Surf bream	Acanthopagrus australis	3
Porgy	Acanthopagrus schlegeli	36
Minnow, tanago	Acheilognathus moriokae	15
Siberian Sturgeon	Acipenser baerii	47
Lake sturgeon	Acipenser fulvescens	38
Sturgeon	Acipenser gueldenstaedti colch	1
Russian sturgeon	Acipenser gueldenstaedtii	2
Sterlet	Acipenser ruthenus	1
Sevruga, stellate sturgeon	Acipenser stellatus	8
White sturgeon	Acipenser transmontanus	42
Sturgeon family	Acipenseridae	1
Minnow	Acrossocheilus paradoxus	13
Spiny rayed fish class	Actinopterygii	3
Diamond killifish	Adinia xenica	3
Hooknose	Agonus cataphractus	48
Longfin dace	Agosia chrysogaster	3
Bleak	Alburnus albidus	5
Bleak	Alburnus alburnus	119
Yelloweye mullet	Aldrichetta forsteri	9
Blueback herring	Alosa aestivalis	9
Alewife	Alosa pseudoharengus	5
American shad	Alosa sapidissima	7
Glassy, Perchlet	Ambassis commersoni	3
Bald glassy	Ambassis gymnocephalus	3

(Carboxyme	thoxy)buta	nedioic acid,	Trisodium salt 🛛 🏨	Show	(Carboxymethoxy)butanedioic acid, Trisodium salt studies for all species												
Zebra danio Danio rerio	Mortality	Mortality	FRY, 3 WK	96 h	LC50	2,100,000	1,700,000	2,500,000	ug/L	A	63.9 % Al	Static	Not Acutely Toxic		1982	J.Environ.Qual.of Life Report No.EUR 7549:284-295	
Zebra danio Danio rerio	Mortality	Mortality	JUVENILE, 12 WK	96 h	LC50	2,600,000	2,500,000	2,700,000	ug/L	A	63.9 % Al	Static	Not Acutely Toxic		1982	J.Environ.Qual.of Life Report No.EUR 7549:284-295	
Zebra danio Danio rerio	Mortality	Mortality	ADULT, 20 WK	96 h	LC50	2,500,000	1,800,000	3,100,000	ug/L	A	63.9 % Al	Static	Not Acutely Toxic		1982	J.Environ.Qual.of Life Report No.EUR 7549:284-295	

(T-4)-bis(2-Hydroxypropanoato-O'1, O2)zinc III Show (T-4)-bis(2-Hydroxypropanoato-O'1, O2)zinc studies for all species

Danio rerio	nio Mortality	Mortality	NR	96 h	LC50	23,100	-	-	ug/L	т	NR	Static	Slightly Toxic	1998	Chemosphere 37(7):1317-1333
Danio rerio	nio Mortality	Mortality	NR	96 h	NOEC	12,900	-	-	ug/L	т	NR	Static		1998	Chemosphere 37(7):1317-1333

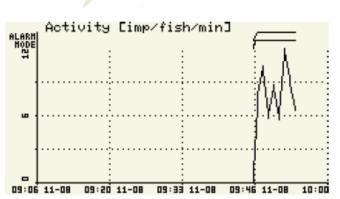

1,1,1-trichloroethane II Show 1,1,1-trichloroethane studies for all species

Zebra danio Danio retio	Behavior	Behavioral changes, general	NR	14 d	NOEC	3,400	-	-	ug/L	F	NR	Flow through		1990	Testbericht Wassergefahrdende Sto Fraunhofer-Institut fur Umweitchemie und Okotoxikologie, Schmallenberg (OECDC Data File)
Zebra danio Danio rerio	Mortality	Mortality	NR	48 h	LC50	79,000	-	-	ug/L	F	NR	Flow through	Slightly Toxic	1990	Testbericht Wassergefahrdende Sto Fraunhofer-Institut fur Umweitchernie und Okotoxikologie, Schmallenberg (OECDC Data File)

moldaenke

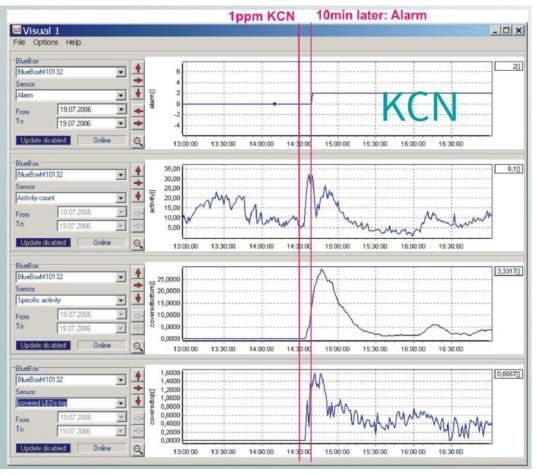
bbe

Response Time



To put the Items together

- Fish/Testorganism
- Alarm Software


Alarm Recognition

Activity

Specific activity

Thresholds

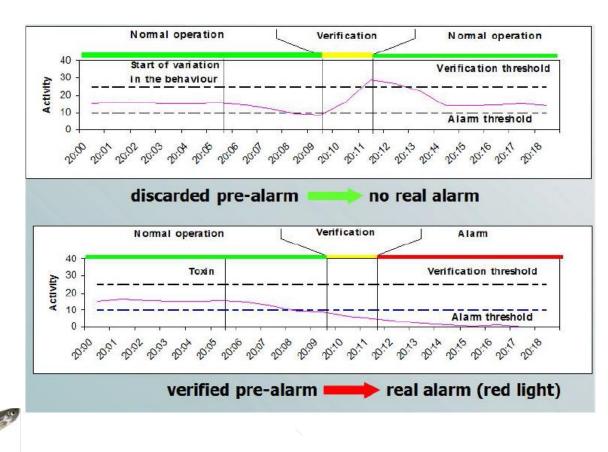
Alarm

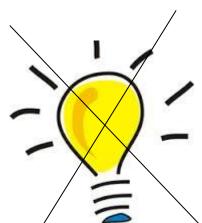
False Alarm Prevention

Problem:

- false alarms occur due to the natural variation in behaviour
- due to the low risk of an event, alarms can be wrong

Consequence:


an alarm evaluation is required to reduce the risk

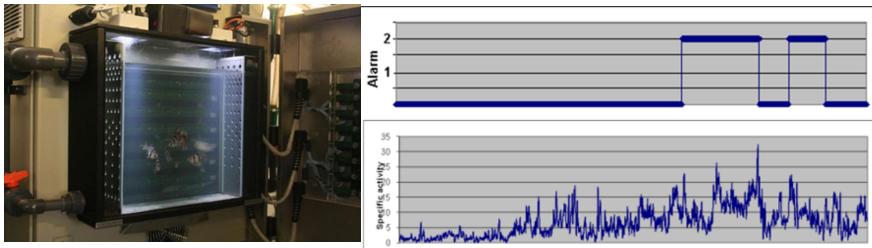

Solutions

- second independent instrument
- second type of test in the same instrument

Alarm Verification = False Alarm Prevention

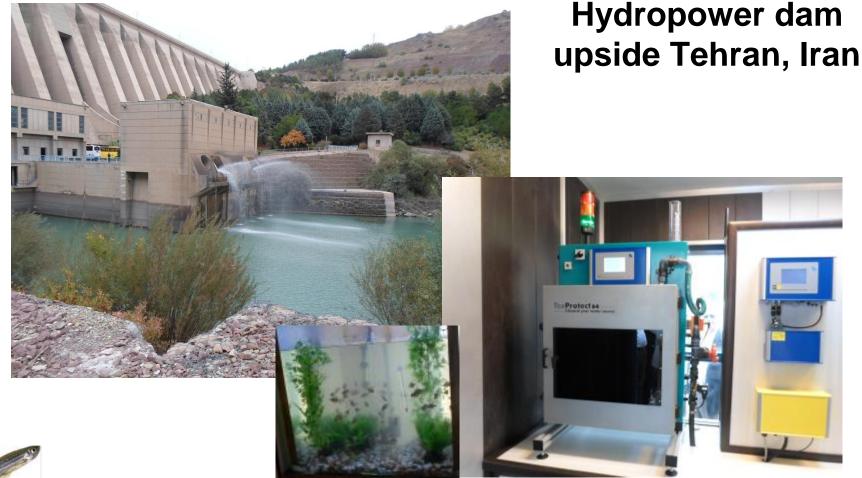
To put the Items together

- Hardware ToxProtect
- Fish/Testorganism
- Alarm Software


bbe

moldaenke

Application Measuring Station



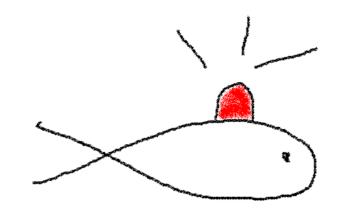
Real alarm from pig farm faeces in Latvia

Application Water Quality Monitoring

ToxProtect is a qualified tool for water quality survey. It detects contaminations in short times.

ToxProtect combines the ability of fish toxity assessment with a superior alarm recognition.

ToxProtect includes an alarm verification check.


ToxProtect reduces costs and risks.

moldaenke

bbe

Thank you

