

September 2006, 12-14 Kiel Center of Innovation and Technology, Germany

Aquatic animal behaviour test — video system tracks fish movements

Georg Staaks & Daniela Baganz

Leibniz-Institute of Freshwater Ecology and Inland Fisheries Berlin, Germany

Topics

- Principles and methods of automated animal behaviour testing
 - Behaviour of fish and what does it tell us
 - Method of video analysis of fish behaviour the example of BehavioQuant
- Selected results of behavioural video analysis investigating the influence of toxic substances
 - Experimental set-up
 - Influences of MC-LR on general activity parameters
 - Analysis and significance of activity rhythms
 - Comparison of PCB 28 influences to MC-LR

Behaviour

Baganz, 2005

Recording of fish behaviour

Functional principle

BehavioQuant®-System (from Lorenz, 1993)

BehavioQuant - software and abilities (1)

BehavioQuant - software and abilities (2)

Screenshot

- Movement tracks of one fish group during one measuring interval
- Different lines represent single individuals
- 69 measuring cycles of 2 min per day, frequency of 25 frames per second

Problem 1 – crossing pathways

- Setting of a breakpoint in object-recognition algorithms
- All objects are given new numbers, new pathways are calculated
- Most similar objects are recombined

Problem 2 – mirror objects

- Mirror objects are effectively filtered by a time parameter
- They almost occur less than 40 % of the whole observation time

Recordable parameters of fish behaviour

Results of behavioural video analysis

- Experimental set-up
- Influences of MC-LR on general activity parameters
- Analysis and significance of activity rhythms
- Comparison of PCB 28 influences to MC-LR

Experimental design

- 6 schools of seven adult individuals each were kept in 15-litre aquaria
- 3 weeks of acclimatisation
- Automated video processing system

Chemical stressors

Microcystin-LR (MC-LR)

Natural Stressor

2,4,4`-Trichlorobiphenyl (PCB 28)

• Anthropogenic Stressor

- Widespread in the aquatic environment
- Rather little knowledge about impact on fish behaviour

Cyanotoxin: Microcystin-LR (MC-LR)

- Produced by the cyanobacterium Microcystis aeruginosa and other cyanobacteria
- Cyanobacteria blooms: up to 120 μg l⁻¹ of dissolved MC-LR (Welker et al., 2001)
- Toxic effects of MC-LR on fish: e.g., damage to the liver, kidneys, or gills and mortality

(Råbergh et al., 1991; Carbis et al., 1996; Fischer et al. 2000; Wiegand und Pflugmacher, 2005)

PCB 28: 2,4,4'-Trichlorobiphenyl (C₁₂H₇Cl₃)

- PCBs are chlorinated aromatic hydrocarbons
- Most of acute toxic effects on fish are related to commercial PCBs mixtures and to coplanar PCBs:
- Liver damage, impairment of osmoregulation and immune functions, endocrine effects and mortality
 (Hansen, et al., 1974; Monosson et al. 1994; Rice und Schenk, 1995; Zala und Penn, 2004)
- 2,4,4` trichlorobiphenyl: ortho-substituted PCB congener

Fish species

• Analysing potential species-specific reactions to chemical stressors

Danio rerio (Zebrafish)

- Often used in toxical tests
- Tropical species

Leucaspius delineatus (Sunbleak)

- Europe, Asia
- Temperate species

Motility

= swimming velocity in video-pixels per second

Motility (Light / Dark)

ANOVA, Dunnett T3 post hoc

* p< 0.05 ** p< 0.01 *** p< 0.005

Danio rerio

Leucaspius delineatus

MC-LR concentration [µg l-1]

Turns

= number of changes of the direction per second

Danio rerio

Leucaspius delineatus

Temporal development of motilities

• 6 time intervals of exposure period (5 x 3 days und 1 x 2 days)

Light / Dark activity

Effects of zeitgeber =

motility of light phase

overall motility (light and dark phases)

Danio rerio

Reaction of fish to light on is reduced under chemical stress conditions

Time series analysis: 1. Cosine analysis

- Single cosine model using a non-linear regression procedure
- Applying a cosinus equation to the raw data series (SPSS 9.0)
- Using an approximation by sequential quadratic optimisation
- f(x) = M + A * cos (2p /P * (x K))

Cosine-Analysis

MC-LR

Cosine-Analysis

MC-LR

Time series analysis: 2. Power spectral analysis

- Fourier transformed autocorrelation function
 Program "Zeit" (Scheibe et al., 1999, 2002)
- Quantification of the harmonic frequency structure of activity rhythms
- Data series are modelled with oscillations of different period lengths

Power spectral analysis

ANOVA, Dunnett T3 post hoc

Motility (Light / Dark)

Summary

- Significant effects of both substances on the locomotor
 behaviour as well as on the rhythms of activity of both species
- Both stressors caused a significant decrease in activity
- Compensation effects between the diurnal and nocturnal phase of the day
- Use of chronobiological methods is helpful to increase the capability of behavioural studies

Conclusions for biomonitoring

- Some of the standards of the experimental design of this study are relevant for biomonitoring
- Acclimatisation period and the constancy of external factors
- Usefulness to register the absolute deviation from standard values
- Several different patterns of animal reactions dependant e.g. on the species and the daytime

Thank you...

... for your attention.

Next stage of the work:

- Development of a low-budget biomonitoring system for drinking water protection (Project TECHNEAU)
- Aim: high reliability, indication of acutely dangerous situations

Monitor device: array of about 64 light barriers

Alarm triggers: software combines activity analysis with height distribution

Alarm Verification

ToxProtect 64

- Natural random variations of fish behaviour
- Alarm criterion may be reached from time to time

- Integration of an alarm verification system to reduce false alarms
- Achieved by changing the illumination inside the aquarium
- Leads to a dramatic increase in activity
- Under toxic conditions this may not occur
 - Further laboratory tests

