hhe

bbe10cells-analysis of the impact of chlorine sterilization on different algae species

Andreas Jatzkewitz

bbe moldaenke

index

- introduction
- experiment:
 - procedure
 - → results
 - lessons learned

prospects

bbe moldaenke

introduction

moldaenke

introduction

According to WMO, biological content of ballast water must be <10 cells/ml prior to discharge

Common means of ballast water sterilization:

→ chlorine

moldaenke

introduction

According to WMO, biological content of ballast water must be <10 cells/ml prior to discharge

Common means of ballast water sterilization:

→ chlorine

→ UV-exposure

introduction

According to WMO, biological content of ballast water must be <10 cells/ml prior to discharge

Common means of ballast water sterilization:

- chlorine
- UV-exposure
- ultrasound

moldaenke

introduction

According to WMO, biological content of ballast water must be <10 cells/ml prior to discharge

Common means of ballast water sterilization:

- chlorine
- UV-exposure
- ultrasound
- heat

moldaenke

introduction

According to WMO, biological content of ballast water must be <10 cells/ml prior to discharge

Common means of ballast water sterilization:

- chlorine
- UV-exposure
- ultrasound
- heat
- oxygen

experiment: procedure

experiment: procedure

A solution of each of the following species of algae was prepared with artificial sea-water:

green algae	Chlorella vulgaris
	Tetraselmis sp.
blue green algae	Microcystis aeruginosa
	Nostoc sp.
diatoms	Cyclotella meneghiniana

experiment: procedure

6 samples of each species were prepared by adding different amounts of NaClO to the original solutions.

Consequently, these 6 samples contained the following chlorine concentrations (c_{CI2}) :

- 10 ng/l
- 20 ng/l
- 40 ng/l

- 150 ng/l
- 300 ng/l
- 600 ng/l

experiment: procedure

c_{cl2} of each sample was measured with **bbe AlgaeLabAnalyser** and **bbe 10cells** at 3 points in time:

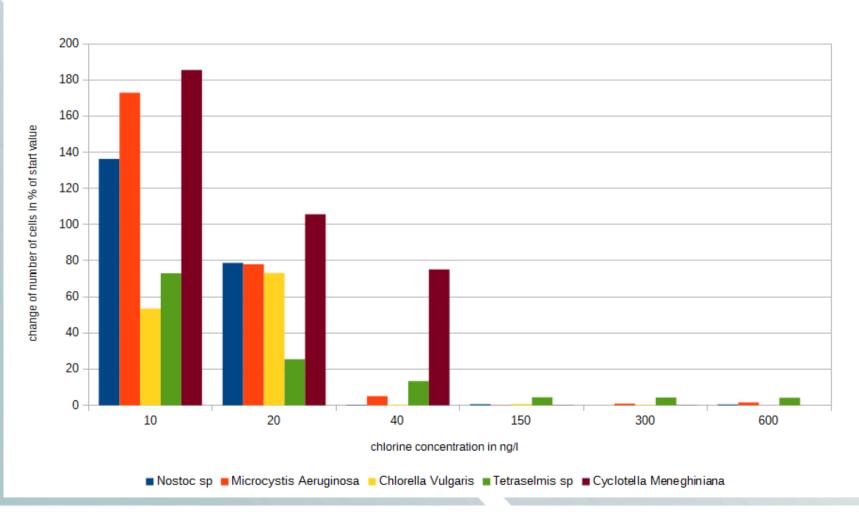
- before chlorination
- Th after chlorination
- 6d after chlorination

All samples had been stored in a dark refrigerator between measurements.

bbe moldaenke

experiment: results

page 13 of 19


biological · biophysical · engineering

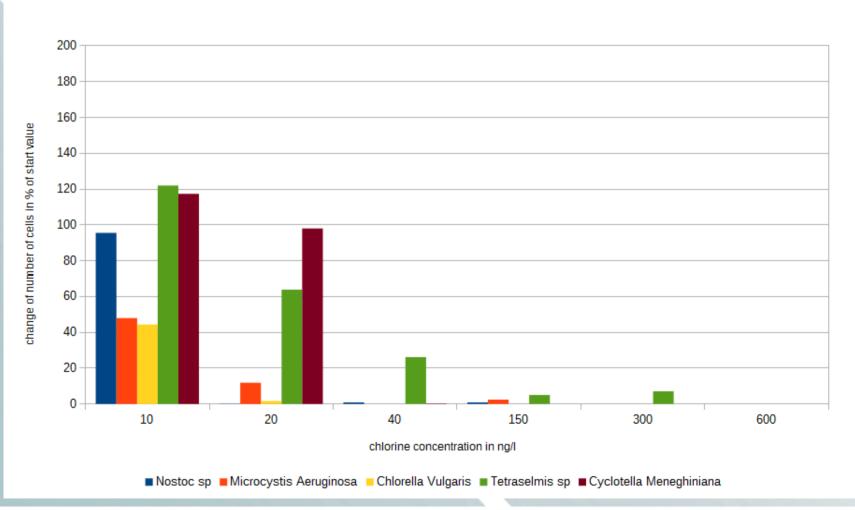
bbe

moldaenke

experiment: results

1h after chlorination

page 14 of 19


biological · biophysical · engineering

bbe

moldaenke

experiment: results

6d after chlorination

page 15 of 19

experiment: lessons learned

• some species are more resistant to chlorenation then others (e.g. *Cyclotella meneghiniana*)

- in most cases, effect of chlorenation increases over time
- for some algae, immediate effect is greater than long term effect (e.g. *Tetraselmis*)

 \rightarrow amount of necessary chlorine source is dependent on anticipated algae species and available reaction time

bbe

prospects

page 17 of 19

moldaenke

prospects

For reliable information about necessary chlorine concentration: further experiments necessary

Reason: Other organic material in sea-water may also react with chlorine.

 \rightarrow Much larger chlorine concentrations may be necessary.

bbe

Thank you for your attention!

page 19 of 19