A trial deployment of silicone-rubber passive sampler, and litter/plankton samplers attached to a -4H- FerryBox flowthough seawater system

> Jonathan L. Barber Cefas (passive sampler) Thomas Maes Cefas (micro plastic) Tobias Boehme -4H- JENA engineering GmbH

AquaLife 2014, June 3-4, Kiel

Silicone rubber passive samplers

 Use has been reported in scientific literature for >10 years now

Silicone rubber passive samplers

 Can be deployed by hanging off fixed buoys or other platforms

Silicone rubber passive samplers

ICES TECHNIQUES IN MARINE ENVIRONMENTAL SCIENCES
NO. 52

Guidelines for passive sampling of hydrophobic contaminants in water using silicone rubber samplers

Foppe Smedes and Kees Booij

 Technique is very well characterised and ICES guidance document available

 Performance reference compounds (PRCs) are used to calculate sampling rates and hence (dissolved) water concentrations

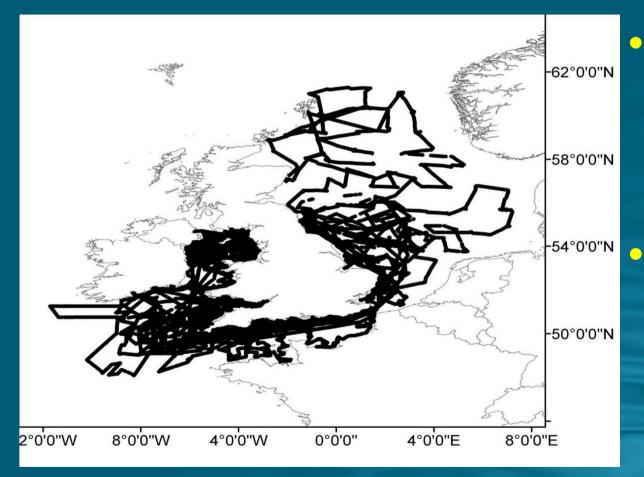
Project Plan

- 38 sites around UK
- In- and offshore
- 5 UK agencies
 - (Cefas, Marine Scotland, SEPA, EA, NIEA) with Deltares
- Multiple samplers (Silicon rubber, POCIS)
 Utilising smartbuoys

Important lessons learned

- Few offshore sites available
- Permission to deploy in certain areas not easily obtained
- Some samplers lost (also in previous programmes)
- Very long sampling programme
 - Supposed to be simultaneous deployment but ended up staggered over 8 months, due to problems arranging access

Alternative deployment strategy?


- Cefas Endeavour is at sea in UK waters for >200 days per year
- FerryBox and pCO₂ systems onboard continuously measure levels of nutrients and other parameters on a seawater flow-through system

RV Endeavour cruise track 2010

Comprehensive cover of English and Welsh waters

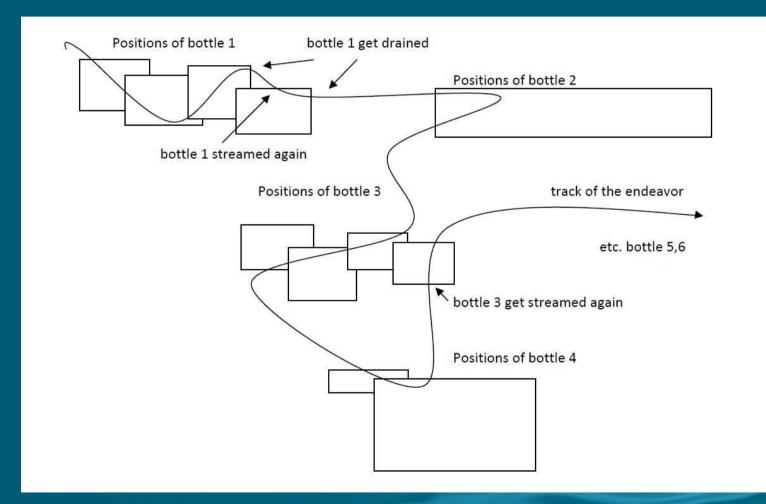
FerryBox operational since January 2009, pCO₂ analyser since 2011

FerryBox on RV Cefas Endeavour -4H- FerryBox

Chlorophyl **Turbidity** Disolved Oxygen Conductivity Salinity **Temperature** High acurate pH Hull mounted PRT Weather pCO2 PAR

efas

Cefas Ferrybox passive sampler

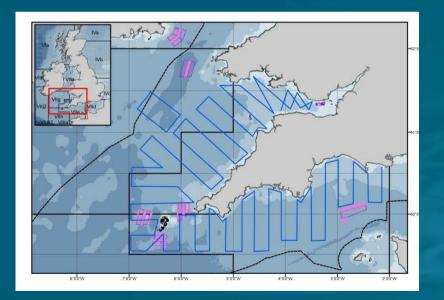

Software control of sampler

- Fully automated system
- Traps can be filled separately or trap
 6 can be filled at same time as any others
- Sampling can be based on geographical region or time

Sampling by geographical region

Sampling by time period

trol position, times, mo	dules		
mple positions Sample	times Modules proce	ssparameter Supervisor acti	ions
bottle enable no name of	probe Start date	Stop date	
1 test	13:12 20/10/2012	13:22 20/10/2012	
2	10:58 20/10/2012	11:01	
3	11:04 20/10/2012	11:06 20/10/2012	save new dates?
4	11:08 20/10/2012	11:10 20/10/2012	
5	11:12 20/10/2012	16:02 21/10/2012	Start time has to be before stop time!
6	11:16 20/10/2012	20:40	0
	00:00 DD/MM/YYYY	DD/MM/YYYY	0
1	00-00 DD/MM/YYYY	DD/MM/YYYY	0
1	DD/MM/YYYY		


 Sample using start and end times as control parameters Again, multiple time periods can be assigned to the same trap (if know when going close to shore for e.g. crew change)

Cruise details

 Cefas Endeavour cruise Cend18/12 (23rd of October-9th of November 2012)

 A multidisciplinary pelagic survey of the Western Channel and Celtic Sea waters to estimate the biomass and gain insight into the population structure of the small pelagic fish community

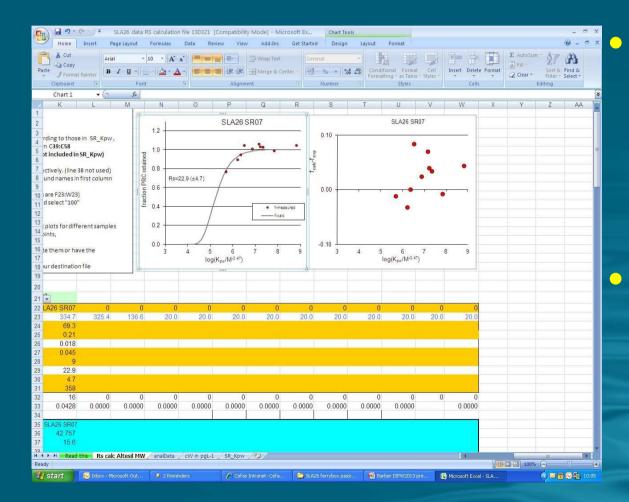
Problems during deployment

- System installation was carried out on 2 day cruise immediately before Cend 18/12 and was not completely optimised
- In order to avoid disturbances to FerryBox and pCO₂ analyser data collection, system was temporarily installed to a different sea water line
- The end of this sea water line was also used by staff in the lab for fish sample processing and mistakenly got turned off twice at the end of shifts

Deployment statistics

	trap1	trap2	trap3	trap4	trap5	trap6
Start date	23/10/2012	24/10/2012	29/10/2012	06/11/2012	08/11/2012	23/10/2012
End date	24/10/2012	28/10/2012	06/11/2012	08/11/2012	09/11/2012	09/11/2012
Total volume (in L)	13398	54589	112798	24952	12669	218414
Average flow rate (in L/min)	9.33	9.48	9.79	9.81	9.81	9.69
Sampling duration (in days)	1.00	4.00	8.00	1.75	0.90	15.64

 Information collected by software controlling sampler

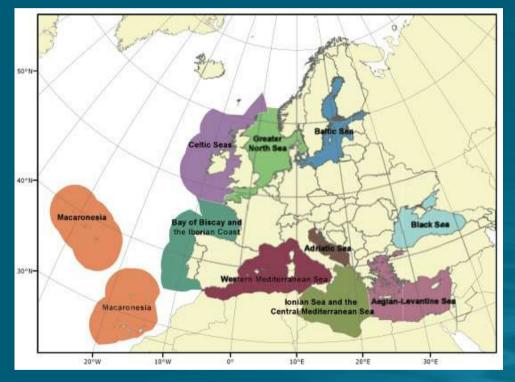

Analytical details

- Samples split into 2 sub-samples for extraction and C8 clean-up and were then recombined afterwards
- Whole sample gravimetrically split into 2, with half going to PAH analysis and half going to organohalogen and PRC analysis
- Alumina clean up of PAH fraction prior to GC-MS analysis
- Alumina clean-up and silica fractionation of organohalogen fraction prior to GC-EI-MS (PCBs, PRCs and OCs) and GC-CI-MS (PBDEs) analysis

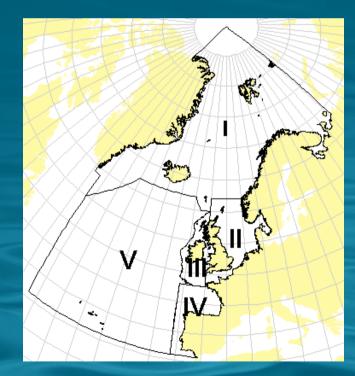
How long is needed to measure PRC loss?

Good fit to equation for PRC compounds for 8 and 16 days exposure **Sampling rates** ~20 L/day, similar to offshore deployed samplers

Results: water concentrations


	Exposure length (in days)				
	8	16			
	Water concentration in pg/L				
НСВ	6.9	6.9			
ΣCBs	85	88			
∑BDEs	64	31			
∑PAHs	12829	10733			
Phenanthrene	604	594			
Benzo[a]pyrene	39	29			

 (dissolved) water concentration data can be calculated for the 8 and 16 day exposures, equivalent to the area of the Celtic Sea and the **Celtic Sea plus English Channel** areas



Good enough for regional measurements? Yes!

MSFD sub-regions (draft as on 18 July 2012) from: <u>http://www.projectpisces.eu/guide/the_msfd</u> _and_the_ecosystem_approach/

OSPAR regions

Marine Litter

Facts & Figures

What is Marine Litter:

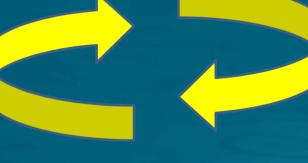
Any man-made object discarded, disposed of, or abandoned that enters the coastal or marine environment. It may enter directly from a ship, or indirectly when washed out to sea via rivers, streams and storm drains.

Types of Marine Litter:

Ranges from common domestic material (bags, cups, bottles, balloons) to industrial products (strapping bands, plastic sheeting, hard hats, resin pellets) to lost or discarded fishing gear (nets, buoys, traps, lines).

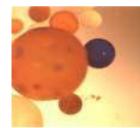
Where does it come from:

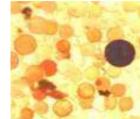
- Ocean-based Sources: Fishing Vessels, Cargo Ships, Stationary Platforms, Fish Farming Installations, Pleasure Crafts and Other Vessels
- Land-based Sources: Littering, Dumping, Poor Waste Management Practices, Untreated Sewage and Storm Water Discharges, Riverine Inputs, Industrial Facilities, Tourism, Extreme Natural Events

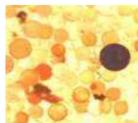


BENTHIC

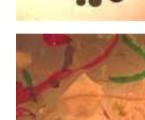
MACRO MICRO

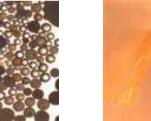






Chemical leaching & sorbance!





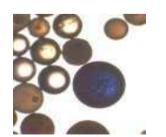




Figure 9. Plastics generation and recovery, 1960 to 2008

PLASTIC:

 Alexander Parkes ,
 1862, the first manmade plastic, Great
 International
 Exhibition in London

➢ Worldwide plastic production 280 million tonnes (2011)

100kg plastic per person/year in Europe

Manilla, Philippines. Photo: Francis R. Malasig

Krichim, Bulgaria . Photo: Dimitar Dilkoff

UK Beach, Devon. Photo Source: SWNS

North America. Photo Source: photobucket

Newport Channel, Los Angeles, USA. Photo Source: Coastal wiki

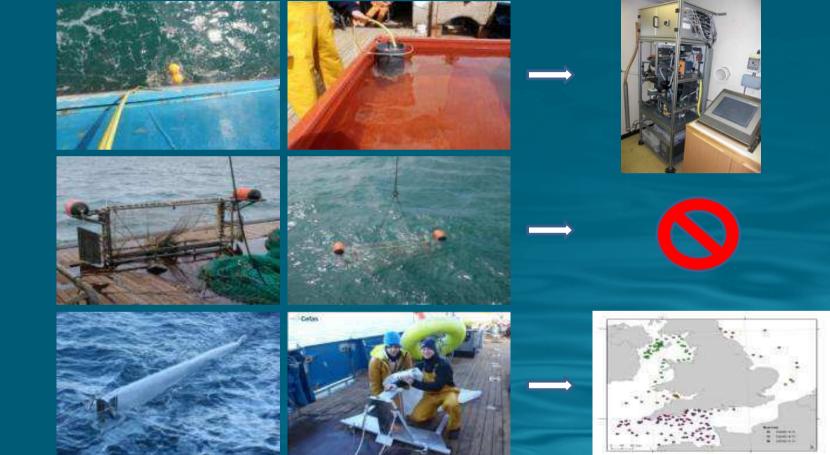
Philippines. Photo Source: NSW Volunteers

Mediterranean. Photo Source: Bouteilles à la mer org.

Southbank, London, UK. Photo Source: Surfers Against Sewage

Socio-Economic Impacts

Monitoring & Research



concentration tick and

1.00

Microplastic Monitoring and Method development

- 3 different methods tested
 Filtration 200µm
 Surface fishing net 1cm
 High speed manta trawl 333µm

1

3

Microplastic Monitoring and Method Development

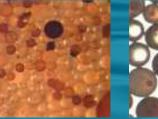
First results sommer 2014

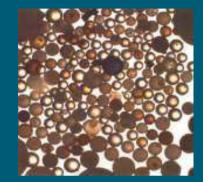
Manta Trawl Case Study

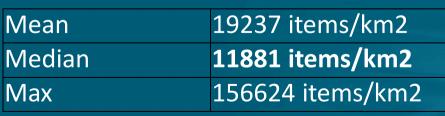
3 surveys 2011 151 locations around the UK Total collected items: 3599 items

COLOR & TYPE

4.749 – 2.800mm 2.790 – 1.000mm 0.999- 0.710mm 0.709 – 0.500mm 0.499 – 0.355mm

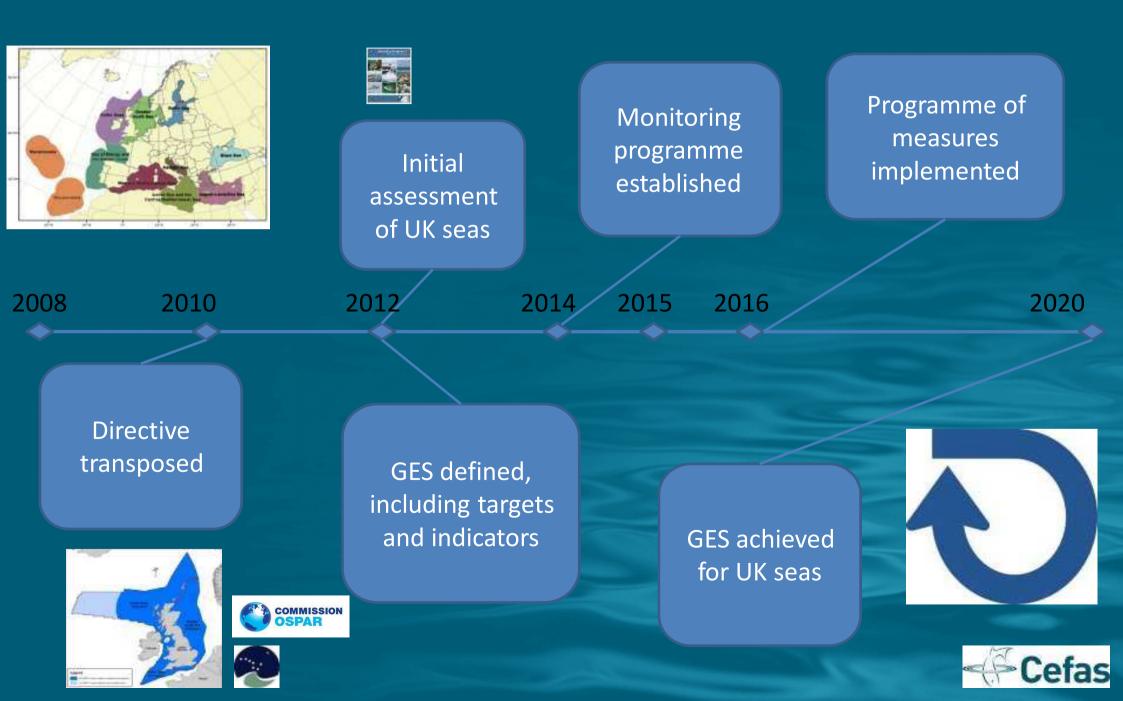



HIGH SPEED MANTA TRAWL RESULTS


Highest catch: 283 items

Monitoring strategy 2014/2015 Microplastic during autumn/winter Plankton during spring/summer





3 Pilot Projects

The Marine Strategy Framework Directive

The only way to manage the marine litter pollution issue is by limiting the input—changing ways and behaviours that cause marine litter to enter the environment.

Reduce, Reuse, Recycle, collect

http://www.theoceancleanup.com/

Any questions or comments?

Please contact me for CEFAS email adresses tboehme@4h-jena.de

Thank you very much for your attention